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We develop a computational methodfor the estimation of parame-

ters in a distributed model for a flexible structure. The structure

we consider (part of the "PL experimenta) consists of a cantilevered

beam with a thruster and linear accelerometer at the free end. The

thruster is fed by a pressurized hose whose horizontal motion effects

the transverse vibration of the beam. We us9 the Euler-Bernoulli

theory,to model the vibration of the beam and treat the hose-thruster

assembly as a lumped or point mass-dashpot-spring system at the tip.

-Usizxg measurements of linear acceleration at the tipf estimate the

hose parameters (mass, stiffness, damping) and a Voigt-Kelvin

viscoelastic structural damping parameter for the beam using a least

squares fit to the data.

We consider spline based approximations to the hybrid (coupled

ordinary and partial differential equations) system; theoretical

convergence results and numerical studies with both simulation and
actual experimental data obtained from the structure are presented and

discussed.
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1. IntrodUction

The difficulties involved in the design of practical and effi-

oient control laws for large flexible spacecraft (e.g. the inherent

infinite dimensionality of the system, a large number of closely

spaced modal frequencies, high flexibility, light damping, a fuel-

limited, hostile, highly variable environment, etc.) have stimulated

research into the development of system identification and parameter

estimation procedures which will yield high fidelity models. A partic-

ular area of interest involves schemes for the estimation of material C

parameters describing, for example, mass, inertia, stiffness or

damping properties in distributed models for the vibration of

viscoelastic systems-specifically, mechanical beams, plates and the

like. In addition, since the resulting inverse problems are often

infinite dimensional, substantial attention has been focused on

approximation; see, for example, [1], [2], [3], [4], [8] and [12].

In these treatments, the parameter estimation problem is formulated as

a least squares fit to measurements of either displacement or

velocity. Although significant gains have been made in the development

of instrumentation to measure displacement and velocity (e.g. laser

technology, etc.), one of the least expensive, most reliable and most

* commonly used sensors is the linear accelerometer. While in principle

it is possible to integrate acceleration measurements once or twice

to obtain respectively velocity or displacement data, in practice this

task can pose significant challenges. For example, integration of the

signal could result in the amplification of low frequency measurement

noise or dynamic effects which have not been included in the underly-

ing model. In light of this, we have undertaken to show here, both



,. n'- . - . ,. o•. . . : .:. - . , . . .::. , - .

2

theoretically and computationally, that a scheme in the spirit of

those developed in the previously cited references can also be

effectively used with acceleration measurements. In particular we

note, this involves the nontrivial extension of the familiar

variational arguments which are used to demonstrate the convergence of

the finite element state approximations upon which the identification

schemes are based. Indeed, it must be shown that in addition to the

convergence of the displacement and velocity, the convergence of

acceleration can be obtained as well.

The other primary motivation for the present effort is that while

these methods have been extensively tested and evaluated with simula-

tion data, they have never been tried with actual experimental data.

We have tested our scheme with data obtained from an experimental

structure which was designed and constructed at the Charles Stark

Draper Laboratory in Cambridge, Massachusetts with funding provided by

the United States Air Force Rocket Propulsion Laboratory (RPL). The

RPL structure (as it will henceforth be referred to as) was designed

. to serve as a test bed for the implementation and evaluation of

. control algorithms for large angle slewing of spacecraft with flexible

appendages. The structure was specifically designed to exhibit

*' structural modes and damping characteristics representative of

realistic large flexible space structures.

In Section 2 we describe the RPL structure (its geometry,

instrumentation, etc.) and formulate an inverse problem involving a

distributed system. In Section 3, we use the resulting infinite

dimensional estimation problem to motivate the development of a finite

dimensional, finite element based approximation scheme. We also

. -. 4% - ~ 4~4* *-~4
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discuss our theoretical convergence results. In Section 4 we present

numerical findings.

We use standard notation throughout. For X a normed linear

space, L(X) denotes the space of bounded linear operators from X into

X. For n an interval and k - 0,1,2,--., C k(n;X) denotes the space of

functions from n into X which are k times continuously strongly

differentiable on n. When k = 0 we shall simply write C(n;X). A

function f from n into X will be said to belong to L,(n;X) if

Inlf(t)I dt < Fork - 0,1,2,.., Hk(.;X) denotes the completion

kof C (n;X) with respect to the norm

k 1/ x
J 0

If, in addition, X is a Hilbert space with inner product '*'X then

Hk(n;X)is a Hilbert space with inner product

k()(f'gk n < Jf(i)(t), gCJ)(t)>x dt.

When X - R, we use the abbreviated notations C (n), L,(n) and H (n).

Note that HR(f) - L,(n) and '"'"0 is the standard inner product on

* L 2 (fl)
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2. The Identification Problem

The RPL structure (see Figure 2.1 below) consists of four

flexible appendages which are cantilevered at right angles to one

another from a rigid central hub. The hub is mounted on an air

bearing table thus permitting the near frictionless rotation of the

structure about the vertical axis.

FLEXIBLE HOsES

. ... IL3WA n/ANo

WN.4

ACrIVt 2SEIUMTIMA
VALIIIU[ISIIR

. TABLE,

Al VARIABLE LASII

Figure 2. 1

Two of the appendages (which are mounted to the hub 1800 apart) are

"active"; each has two nitrogen cold gas thrusters mounted in opposing

directions at its tip. The remaining two appendages are "passive"

with only counter-balancing masses affixed to their free ends. The

presence of the tip masses on the passive arms serves to preserve the

S

.. . . . . . . . .
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overall symmetry of the structure. Nitrogen gas from tanks mounted on

the central hub is supplied to the thrusters via two stainless steel

mesh-wrapped high pressure hoses. The expulsion of propellant from

the thruster nozzles is controlled by electro-mechanical or solenoidal

valves. Each of the four appendages is equipped with a sensor in the

form of a linear accelerometer attached at its tip. Data from the

accelerometers is processed and recorded and control input signals to

the thrusters are generated by a MINC 11/23 microcomputer. A detailed

description of the structure's design specifications can be found in

[6] and [15].

The problem which is of primary concern to us here involves the

modeling of the effects of the nitrogen supply hoses on the transverse

vibration of the active members. We consider therefore, the structure

with the central hub immobilized and look only at the vibration of one

of the active appendages and view it as a simple cantilevered beam

(see Figure 2.2).

~Figure 2.2

-.-
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We treat the thruster assembly as a point mass that is rigidly attach-

ed to the beam at the tip and propose a model for the hose effects in

the form of a proof mass which reacts against the tip mass. In
effect, we consider the idealized, simplified structure depicted in

Figure 2.3 below involving a single, cantilevered, flexible, uniform

beam with a two-mass-dashpot-spring system affixed to its free end.

.1.

kH

M T

Fiur 2.

1 ',

In formulating a mathematical model for the structure shown in,-

A-q

Figure 2.3 above, we assume that the beam is of length i with uniform

rectangular cross section of height h and width b. We let u(t,x) and

y(t) denote respectively the transverse displacement of the beam at

position x along its span and the displacement of the proof or hose

mass, each at time t. Both are measured relative to the x-axis in the

coordinate frame determined by the longitudinal axis of the beam in

;-.. "-,' $ 5 "i''D'5- 'b ' ""'"" "i " "'.'.% 'i ".".''2" ' 'i'' % "'?"?:i" ".' ; ':b<;" : "ia ' 'i 5 <S 2"'; X ': 5,b 2:i i',A'.
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its undeformed state with origin located at the beam's root or fixed

end. Assuming the beam undergoes only small deformations (i.e.
au

1u(t,x)l - L and l-u(t,x)I - 1) and has a small height to span

length ratio, the Euler-Bernoulli theory (see [5]) including Voigt-

Kelvin viscoelastic structural damping (see [101) yields the partial

differential equation

('u a' a u au
(2.1) p - (tx) + cD I -- (t,x) + EI -(t,x) - 0,

at ax' at ax'

0, x L, t >0

where p is the linear mass density of the beam, E is the modulus of

elasticity, cD is the coefficient of viscosity and I is the second

moment or moment of inertia of the cross sectional area A about the

neutral axis. For the beam we consider here with constant rectangular

cross section, I = bh3/12. Since the beam is assumed to be uniform,

the parameters p, E and cD are taken to be constant in time and space.

Balancing forces at the free end, elementary Newtonian mechanics

yields the equations of motion

.. (2.2) m T 8'(t£) 0 DI 3: - u(t,t- I (ja , a- au a I'u~t£

at2  ax3 at ax3

c H (Y(t) - -(t,)) + kH (y(t) - u(t,)) + f(t), t > 0
dt at

and

(23)day y au
(2.3) m - (t) + 0H (Y(t) - -(t,t)) + kH (y(t) - u(t,)) - 0,

dt' dt at
t ,0

S.

............
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for the tip and hose masses mT and m. respectively. Here kH is the

hose stiffness, o. is the hose damping coefficient and f(t) is the

externally applied force at time t due to the firing of the thrusters

mounted'at the tip.

Making the assumption that the rotatory inertia of the proof mass

system is negligible, rotational equilibrium at the tip can be

expressed as

[] (2 ) CDI8' au 8u
(2.4) .8 a (t,j) + El -(t,i) = 0, t > 0.D 8x2 8t ax2

The zero displacement and zero slope constraints at the fixed end are

* given by

(2.5) u(tO) = 0 and -(t,0) - 0, t > 0' ax

respectively. Taking the structure to be initially at rest we have

the initial conditions

au
(2.6) u(Ox) = 0 and -(Ox) = 0, 0 xat

and

dy
(2.7) y(O) - 0 and -(0) - 0.

dt

In the mathematical model given by (2.1) - (2.7) above the parameters

,. p, mT and I can be measured or computed directly. The modulus of

elasticity E is typically determined in the laboratory. For the most

commonly used materials (including aluminum which is the material from

0
• .ke



which the structure of interest to us here is made) its value can be

readily looked up in standard engineering tables. The parameters oD ,

mH , 
0 H and kH on the other hand, must be determined experimentally;

that is, they will have to be identified based upon the observed

response of the structure to a given input disturbance. This is one

class of inverse problems which we formulate and consider below. In

the system of equations (2.1) - (2.7) we explicitly modeled (albeit,

in a rather simple fashion) the dynamical effects of the hose. The

unknown hose parameters are then determined as the solution to an

inverse problem.

An alternative approach to obtaining a model which exhibits a

reasonable degree of fidelity involves a technique which is sometimes

referred to as model adjustment. Starting with a simple model, the

parameters are then "adjusted" so as to compensate for unmodeled

dynamics. The choice of parameters to be adjusted and the resulting

variations may or may not be motivated by physical considerations.

In our problem for example, we might consider a simple cantile-

vered beam with tip mass (i.e. m - cH - kH - 0) and then adjust the

theoretical or measured values of E and mT to compensate for the

dynamical effects which result from the hose mass and motion. A value

for the parameter oD could also be identified if damping effects are

considered significant. Model adjustment was used in [6] to obtain a

model for the RPL structure upon which control design could be based.

We define an inverse problem which encompasses both of the

general approaches which have been outlined above. We assume that an

input disturbance described by the function f(t), t E [O,T] is applied

to the structure via the tip thrusters and that the linear accelera-

m.
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tion at the free end of the beam, z(t), is measured and recorded for

each t E [t.,t11 where 0 ; t. S t, 9 T. (Of course, in actual

practice, z could in fact only be sampled discretely). Let R+ denote F

the positive real numbers and let Q be a closed and bounded subset of

R+. We seek a q E Q which minimizes
+

J(q) = t1 (t .;q) - 2t

where u(.,.;q) denotes the solution to the initial-boundary value

problem (2.1) - (2.7) corresponding to q - (mTE,cDmHcHk H ) E Q.

Our primary concerns in the next section will include well-

posedness of the system (2.1) - (2.7), existence of a minimizer for J,

and development of approximation techniques to find this minimizer.

%I
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3. Approximation Theory

A computational method for the solution of the estimation problem

posed above will invariably involve finite dimensional approximation

of the initial-boundary value problem (2.1) - (2.7). We have been

successful in solving inverse problems for distributed parameter

models for flexible structures (see, for example, [1), [2], [3], [4],

[12]) using spline-based Ritz-Galerkin techniques. We apply those

ideas here and derive finite element approximations based upon an

abstract Hilbert space formulation of the hybrid system of ordinary

and partial differential equations and boundary conditions given in

(2.1) - (2.7). This abstract formulation is also useful in

establishing existence, uniqueness and necessary regularity results

for solutions. We briefly outline the essential features of our

general approach (including theoretical convergence results) in the

context of the particular problem of interest to us here.

Let H - RI x L,(O,L) be endowed with the usual product space

inner product

(n, ,),(,L, II) 'H - + nu + '0'o

and let

V- {(E,) H H: 0E HI(O,L), 0(0) -D4(O) -0, ,- (L))

be endowed with the inner product

<( '(E)$)'A W()'W>V ( -o(i))(x- (L)) + (DD'DQ

.".

t . M
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where the symbol D is used here and below to denote the spatial

d
differentiation operator-. The space V together with the inner

product ''V form a Hilbert space which is densely and compactly

embedded in H.

We rewrite the system (2.1) - (2.7) as the abstract second order

initial value problem in H

(3.1) Mutt(t) + Cut(t) + Ku(t) - F(t), t > 0

(3.2) 8(u(t) + eut(t)) - 0, t > 0

(3.3) u0o) - 0 ut(o) - 0

in the states u(t) - (y(t),u(t,X),u(t,.)). The operators X E L(H),

.. C:D C H - H and K:D C H - H are given by

- (3.4) M(,1,) - (mHt,mTI,p0),
-°.

0- (OH(?-),cH(1- ) - cDI D3 (%),ODI D40),

and

K(t,, - (kX(k(t-j),kH(j-t) - EI D30(1),EI D',)

where D - {( ,r,€) E V: 1 E H'(0,X)}. For each t > 0, F(t) -

(O,f(t),O) E H, 8: D C H - R is given by 6((,,€)) - D'¢(Z) and e =

ODIE

The restrictions C and K of the operators C and K that appear in

equation (3.1) above to N(6), the null space of the operator 6, have

a. -" . .. ' . ' ' .. -, . . . -.- # -" ", . . . .. " m m " - .- , j ,) t 5 
'
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natural extensions to bounded operators from V (which is the V-closure

of N(6)) into V', the dual of V. The extensions are defined in terms

of the bilinear forms c(.,.): V x V - R and k(.,.): V x V - R given by

(3.5) (00)(iV) - (O, ,) - OH( -00)(X-()) + c0DI(D'4,DzVo

and

(3.6) (60)(6) - k(O,*) - kH( -0())(X-,(X)) + EI(D,D 2 J>o

for € - (V.€(L).€) E V and V - (X,V(L),V) E V.

The finite element method we develop below could be derived from

standard energy considerations. While this is not the approach we

take, it is worth noting that the usual energy expressions can be

given in terms of the forms, operators and inner products defined

above. The kinetic energy is given by

I
T 0 - (Mut(t),ut(t )>H '

2

the potential or strain energy by

Uo = - k(u(t),u(t))
0 2

and the Rayleigh dissipation function by
.1 1

F 0  _ c~ut(t).ut(t)).
2

Written in its weak, variational or distributional form

(3.7) uutt(t),¢)H + c(ut(t), ) + k(u(t),O) - (F(t),O)HO

t , 0 V
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(3.8) U(o) 0 o t(0) 0

the initial value problem (3.1) - (3.2) in H becomes an initial value

problem in V5 . If we assume that f E L,(O,T) and rewrite (3.7), (3.8)

as an equivalent first order vector system, the theory of abstract

parabolic systems (see [9], [14]) yields the existence of a unique

mapping

u E C([O,T];V) n H'((0,T);V) n C&([O,T];H) n Hl((O,T);V ')

which satisfies (3.7), (3.8). If we are willing to assume further

that f is H61der continuous then there exists a

(3.9) u E C([O,T];V) n C'((O,T];V) n C*([O,T];H) n C2 ((0,T];H)

with u(t)+ u(t) E D, t > 0 which uniquely satisfies the initialt
value problem (3.1) - (3.3).

In order to demonstrate the convergence of the approximation

schemes we develop below, we shall require a somewhat more regular

solution to the initial value problem (3.7), (3.8) than either of the

conditions on f stated above can guarantee. In addition to (3.9), we

shall require that u E H'((0,T);V). This can be guaranteed (see [7])

if we assume that f E Hl(-T,T) for some T > 0 with f(t) - 0, t < 0 and

we modify our original mathematical model so that

(3.10) F(t) - f(t)e, t E [-T,T]

for some e - (o,e(),e), a fixed element in V. We note that with e

%
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chosen appropriately in V, F given by (3.10) may in fact represent an

improved model of reality when compared with our present choice of F

where e - (0,1,0) E H.

Central to our approach is a cubic spline based Galerkin approxi-

mation to the initial value problem (3.7), (3.8). For each N -1,2,.-.

N 9 21
let A denote the uniform mesh {0, , , L} on [0,L1 and letN' N .

BN}N+1
S denote the usual cubic B-splines defined with respect to thea J--i

N N 2nodal set A (see [11], [13]). Briefly, each B is a C function on
I

[0,A] which is a cubic polynomial on each subinterval [(k-1)- ,k-1],
N N

k - 1,2,...,N. The support of B is [(-2)L,(J+2>L] n (0,L] with
.1N N

*N Z. N x. N L. N L. NB (Q- ) - 4, DB j-) - 0, B ((J±1)-) - 1, and DB ((J±1)-) - T -.
gNN N N N t.

N N+l N N N N N N
Defining {O I by 0N  B -2B -2B and 8 B , J-2,3,...,N+I,

iJ-1 0 1 -1 J

N N
we have 8 (0) - DO (0) - 0, j - 1,2,'-.,N+I. With 0 - (1,0,0) and

^M N N N+~1
0 (0 (2.),0), j = 1,2,-..,N+1, V - span [0 0 is an N+2

3 ~~~ .1 Jj-0
dimensional subspace of V.

N
The Galerkin equations in V corresponding to (3.7), (3.8) for

^N N
U M)E V are given by

^N N ^N N N -N ^N
(3.11) (Mu (t),0j, + O(u (t),o ) + k(u (t),8 ) - 'F(t), ,

tt jH t j H
t > 0, J - 0,1,2,''',N+I%

(3.12) u (0) -0 ut(0) -0.

I.I
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Setting

.N N+1 N ,N
U (t) - JEO wj(t)Oj t 2 0,

Nthe initial value problem (3.11), (3.12) in V is equivalent to the

* linear, nonhomogeneous, second order N+2 - vector system

(3.13) MdwNN dwN
(.(t) + C - t) + KNwN(t) = FN(t), t , 0
dtz dt

N dwN(3.14) w (o) -0o-(o
dt

N N N N T
where w (t) - (w (t),w (t),.--,w (t)) The entries in the (N+2)

0 1 N+1

x (N+2) matrices M , C and K are given by

N ^N -N
4 - '148i,8

i,j ij H

N ^N ^N
C - (8 ,8 )i,j i i

and

N ^N -N
K - k(8i,8 ),
i'i i a

i,J - 0,1,2,-..,N+1 respectively. For each t > 0 the components in
N N -N N

the N+2 - vector F (t) are given by F (t) -F(t), '> f(t)O 00
i i H i

or, recalling (3.10), by

-. .'. '- . ; '- "- . - - ' . '- . , -. ' ." '-/ . - " ." € - " / / " - ., € " - ' .-: " " " " " " " " ." '.' -' ,[ '4 : . " , , € - " : v ' " -. ' [ [ . : ' S..-
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N N N
F (t) - f(t)<e, > f(t)(e(0)0 0L) + <e,0 > '

i - 0,1,2,..,N+1.

We consider the sequence of approximating finite dimensional iden-

tifioation problems which consist of finding qN E Q which minimizes

t".81u N  2
(3.15) JN(q) - to (t,;q) - zt)Idt

where for each q E (t;q) - (t,.;q)) is the

unique solution to the initial value problem (3.11), (3.12) in V N

corresponding to q - (mT,E,oD,mH,OH,kH) E Q. In actual practice, for

a given q E Q, JN(q) is computed as

N tl N N N 2
j(q) - Jt N ;q) + 4wN(t;q) + wN+l (t;q) - z(t) dt

N N N T

where w (.;q) - (w (.;q),...,w (.;q)) is the unique solution to the

N+2 - vector system (3.13), (3.14) corresponding to q E Q.

With finite dimensional state constraints, the solution of the

thN estimation problem above is, at least in principle, routine. For

inverse problems which are closely related to the one we treat here,

our earlier numerical studies have shown that satisfactory results can

be obtained using any one of a number of standard computational

techniques for least squares minimization (for example, Newton's

method, conjugate gradient, steepest descent, Levenberg-Marquardt,

etc., see [2]).

,e ,. ;+ e, ' ,e , ,., +. .._, _ _ _,._ .. .- . .. . - -.... . . . . . ,- . .....
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Our fundamental theoretical result is that each of the approxi- I
mating identification problems and the original problem have

solutions. Moreover, we show that the solutions to the approximating

problems, in some sense, approximate solutions to the original

problem. We require the following lemma.

NN 0 ~N NLemma31Suppose {q} C Q with q q as N.w Let u(.;q)

denote the unique solution to the initial value problem (3.11), (3.12)

corresponding to qN and let u(.;q) denote the unique solution to the

0 0initial value problem (3.7), (3.8) corresponding to q. If u(.;q) E

Hl((O,T);V) then

(3.16) 0 u (t;q) - u (t;q ) at o0 ttt H

as N -

Proof

For each N - 1,2,... let PN denote the orthogonal projection of H

onto VN defined with respect to the standard inner product on H,

'''>H ~Using the approximation theoretic properties of interpolatory

splines, it is not difficult to show that (see [3])

(3.17) Nm - , - 0

for each (K,',0) E H and that

(3.18) lim N(P 1)01 0
"-. - ] -, .ii
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for each 0 E V.

For q - (mT,E,oD,mH,cHkH) E Q it is immediately clear that M,

c(.,-) and k(.,.), the operator and forms defined in (3.4), (3.5) and

0 0 00 00 0(3.6) respectively depend upon q. For q - (m ,E0 c ,m H ,c H k0 ) E Q

* and qN - (mNENcN mNoN kN) E Q we adopt the shorthand notation
T D H H H

M0 - M(q0), O (.,.) c(q0 )(.,.), k0 (..) k(q 0 )(..), MN - M(qN),

c.C.,.) N c(q )C•,.) and k( •,) - k(qN)(.,.). Similarly, we denote

u(;q ) and N(.;qN) by u0 and N respectively.

-~0
From (3.17), the assumption that u E H((O,T);V) and the

inequality

H'
fTN N0tjd + 0 2t
0 Jtttutt(t)I H H

it is clear that we need only to consider the first term on the right

*: hand side of the above estimate.

Letting vN(t) - u (t) - P u0 (t) for t Z 0, (3.7), (3.8), (3.11),

(3.12) and VN C V imply

(1 MN -N)t N N ( -N) t(3.19 ') + c vto) + k ( v )

N N 0 ^0;
4'N tt'0 'HO 4 + C M - M )uO >

+ 0 ((I-P N)uO,) + o(ON) - N(up o)

- -0 ^N 0 o0 N k N . 0.Nk ((I - ....p N, .. .. + k Cu....u ,...t 0' - E VN
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(3.20) 7N (0) - 0 t(0) -0.

Nhoosing ;N -v- (t) E VN, from (3.19) we obtain

'M- -N > + cN ^v Nv^N

- MN N U-0 -N 0-N ^0 ~N(I-P ) tvt + 'CM -1 )U tt, vtt>H

+ d N(NON ) 0 -N 0N((.N^ 0 N)

+ L 0(OON N -0 N 0~ ̂ 0N N -0 -N
{c (u t v t 0 (ut1v tl to{ (U t.V.~ - 0 (u tt V tl

+ *a-:- kN((I-P )u Ivt - P

-d N -N ^N N^N ^N
k Cv vt) + k (vt,v t). t >C.

Integrating the above expression from 0 to t and recalling (3.20), we

find

r N^N N 1 N N ~
(3.21) M (1 S, ds + _L ON (vt,v)

0H

rt N N 0 ~N (1 0 1 N)0
f 4 Cl (-P )U sVs v( M )U 5 , v

N NO 0 N 0~ ̂0N N -0 ^N0cCCI-P )U- , v5 (0Cu Sv)-c(u v)

55 s s s ss

N(pN)-O N 0+ ( 0 ^ON N ^O N
k CIPut Vt) ( Iu~t - k (urtV

s

N N^ .......... d1



21

((I-P -)u -0t ̂N xk~O~ -0 N ^N kN -N -N

kNk (uO~ v (u vt) k (v v)

We recall that Q has been assumed to be a closed and bounded subset of

R and observe therefore that the forms cO(.), (-,.), k (-,.) and

kN(-,.) are uniformly bounded. These two facts together with the

repeated application of the inequality

<a,b S JalIlbI S alal + Ibl2, a > 0
4a

* in (3.21) yield the estimate

it 2 2

t I INus + I
0 H

t 1 (1 -P N()U)01 2 + v2

N N 2 N 2  N 2

m4-a + _- lI cl + IcH T-I2 + u° + vN 2
+ N 1 2+ + 2+ II H

N, 2N 01 N 012 ^0VS^2NI 2

+ v s+ + I 0p U +1,81 + H H ID- D  UssI

01c 2N o 2 2 0 2+ NI 2
++ I)-l u) + l - l + I-°1 )I+ v NI v

) 2 2 2
, S )ds + -- I (I-p)u I, + aV ,

+ - av +L IP)

4a I H H D D ) I +a,

II

2 012.1^2 12 2I! . a~ lgv +  (lk -kOl + I -.° +u°I v .-.
t 4 H.
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+ L pj + }vlul

where y0 is a positive constant. Choosing a , 0 sufficiently small,

we find

(3.22) v (S)I ds + iv (t)i :9a()+ a1(~d ()
0t) H I ds 0 00 V

where

.N 0
o(t) Y2(I-P °t)l + 1(Ip)u(t)2

IV V

2
+1 ()1 + 1^0(t)12) + 1 N(t) 12

V t V V

N ~0 +I(N 0 M2alCt) -Y 3{ 1(I-P )ut(t)IV + (1P utt~t 1V
2+ 2

12(1^0CK(t)1
2 + -tt1

+ II-q t t t) V
and yi, i - 1,2,3 are positive constants which do not depend on N.

ON ^NNChoosing N - vt(t) E VN in (3.19), arguments similar to those

used above (see [23, [3]) yield

(3.23) lim I.(t)l2 - o
N-+C* V

for each t E [0,T]. Using U E H'((O,T);V), (3.18) and an application

of the Gronwall inequality to (3.22) we obtain the desired result.

We note that we also obtain
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-o.

N 2
(3.24) lrn I vN(t)I 0

for each t E [0,T]. From (3.23) and (3.24) we find uuN(t;qN)-u(t;q0)I
i iV

0 and u(t;q)-u (t;q °I - 0 as N -. for each t E [0,T].o. ..

We remark that it is the L, convergence (more precisely, H

convergence) in (3.16) which necessitates, at least in theory, that we

be provided with distributed time observations (i.e. observations

which are continuous in time). It is clear from (3.23) and (3.24)

- that for fits based upon displacement, velocity or slope, time-sampled

measurements are sufficient. Of course when the approximating

optimization problems are solved, the integral least squares

performance indices (3.15) are disoretized. Consequently, in

practice, only discrete measurements of linear acceleration at the tip

are required.

. Each of the approximating identification problems has a
solution qN. The sequence {qN} C Q admits a convergent subsequence

N4  N4 -

{q J} with qJ - q E Q as j - . If for each q E 9, u(.;q), the unique

solution to the initial value problem (3.7), (3.8) corresponding to q,

is an element in H'((O,T);V) then q is a solution to the original

identification problem. In addition, the limit point of any convergent

subsequence of {qN} is a solution to the original identification

problem as well.

Proof Standard continuous dependence results for linear ordinary

differential equations, the fact that Q has been assumed to be a
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closed and bounded subset of R6 and the form of JN are sufficient to

conclude that a solution -N E Q to the Nth approximating identifica-

tion problem exists. Once again since Q is a closed and bounded (and

therefore compact) subset of R , the sequence {q N} C Q admits a
" ~N N 1

convergent subsequence. If {q } C {q ) with q q E Q as j -. and

q is any point in Q, then two applications of Lemma 3.1 (the second

one with the constant sequence {q)) yield

N -N, N
J(D) - lim j J(NJ) lim J J(q) - J(q)

J-+ J-400

and the theorem is proved.

Although Theorem 3.1 above guarantees only subsequential

- convergence, in all test and simulation examples we have considered,

we in fact observe the convergence of the sequence {N} itself to the

I optimal parameters q. Also, it is not difficult to verify that with

* only minor modification (see [21) the approximation scheme reported on

here (together with the convergence theory outlined in the lemma and

theorem above) could be applied to inverse problems involving the

estmation of spatially varying parameters (such as linear mass density

p, flexural stiffness EI, or damping coefficient ODI) which appear in

the equations (2.1) - (2.4). We note of course that when either EI or

ODI are spatially varying, the Euler-Bernoulli equation and

corresponding boundary conditions are of a slightly different form

than those given in (2.1) - (2.4) (see [3]).

"M

z7
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4. Numerical Results

We used our scheme to attempt to solve the inverse problem which

was posed above with data obtained from an experiment on the RPL

structure. We report on our findings and observations here.

All computer codes were written in Fortran and run on the IBM

3081 at the University of Southern California. The approximating

finite dimensional least-squares minimization problems were solved

using the IMSL implementation of the Levenberg-Marquardt algorithm

(routine ZXSSQ), an iterative Newton's method-steepest descent hybrid

(see[2]). The second order N+2 - vector systems (3.13), (3.14) were

solved (integrated) in each iteration (for the evaluation of jN and

its gradient) using Gear's method for stiff systems (IMSL routine

DGEAR). The integral least squares performance index was approximated

by a discrete sum over a uniform mesh on [t,,t,]. The integral inner

products in the definitions of the matrices MN CN and KN were

computed using a composite two point Gauss-Legendre quadrature rule.

The second time derivative of wN, or generalized acceleration,

dawN

d--, was computed using a second order centered difference on thedt'

generalized displacement,

dawN wN (t+A) - 2wN (t) + wN(t-,A)

dt1  A2

We found this to be a somewhat more stable method for computing

acceleration (an unbounded measurement) than was a first order

centered difference on the generalized velocity,
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dw( A dw A-(t + --- Ct -- )-

(4.2) dwN dt 2 dt 2

dt' A

Either of the time differencing formulas (4.1) or (4.2) proved to be

Nsignificantly more stable than using the differential equation (3.13)

4',dawN

directly to compute - (t) via an inversion of MN As to why this
dt'

was so, we can only offer the conjecture that the time differencing

provided, at least to a certain extent, some filtration of the signal.

Before turning our attention to the experimental data, we tested

our scheme with simulated data. "True" values for the unknown

parameters o (actually CDI), mH, 0H and k. were chosen and a quintic

- spline-based semi-discrete Galerkin scheme applied to the initial

value problem (3.7), (3.8) was used to generate data.

Setting p .03, m T_ .15, EI - 80.0, L - 4.0 and

f(t) - { 1.0 0 6 t S 0.05
0.0 0.05 ( t S 5.0.

the fit was carried out based upon observations of linear acceleration

at the tip at times ti - .li, i - 2,3,..-,50. We note that this is

equivalent to taking t. - .1. t, - 5.0 and using a standard rectangle

rule with uniform mesh spacing .1 to discretize the integral appearing

in the definition of the least squares performance index 0 The

initial estimates oDI - .0035, m - .035, and k. - .4 were used to

start the iterative optimization procedure. In (4.1), A was taken to

be .1. Our results are summarized in Table 4.1 below.

C,

C°,
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N -N -N 0 N kNJ~DI H H H J(N

2 .037537 .039471 .003428 .298626 2.57x10-

3 .066997 .039485 .003907 .298875 4.37x10- 2

4 .005063 .039777 .003997 .299455 5.06x10- 3

5 .005667 .039899 .003971 .299787 7.66x10- 4

6 .005049 .040035 .004006 .300087 4.63X10 5

T.005000 .040000 .004000 .300000
value

I,. Initial
Estimate .003500 .035000 .003500 .400000

Table 4.1

The experiment which we describe below was carried out for us on

the RPL structure by Dr. Michel A. Floyd, formerly of the Control and

Flight Dynamics Division of the Charles Stark Draper Laboratory and

the Department of Aeronautics and Astronautics, MIT.

The air bearing table was clamped so that the central hub could

not rotate. The thruster lines for one of the active appendages was

set to 300 psi and the thruster was fired for .05 seconds (50 milli-

seconds). With the appendage initially at rest, the firing of the

thruster was assumed to have begun at time t - 0. Linear acceleration

at the tip was observed over the time interval 0 to 5 seconds. With a

sampling period of .005 seconds (5 milliseconds) a total of 1000

measurements were recorded. The data is plotted in Figure 4.1 below.
TmThe scale factor for the accelerometer is S volts/g (g - 32 ft/sec').

=.5

..S .*6.: .., '.. - .. . - .-,. .:.-. . ,-.- .....-. , , -. , .-. m, " ... ., ',' " . , '/ ,. . . .
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Figure 4.1

The noticeably higher frequency C- 14 Hz) component of the data

is a torsional mode of the arm excited by the motion of the thruster -

valve mechanisms and inertial and elastic forces applied to the tip of

the arm by the nitrogen supply hose. The opening or closing of the

solenoidal valve in the thruster generates an inertial force which

aots as a torque on the tip of the arm. Consequently, torsional modes

are excited. Also, in addition to modifying transverse bending

characteristics, since the hose is attached to the top of the arm, its

horizontal motion will tend to generate torques which have a

"twisting" effect. Although the accelerometer is mounted at the

%..2
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center of the arm (and therefore on a nodal line of the longitudinal

torsional modes, if we assume vertical symmetry), as the arm twists,

the accelerometer picks up a component of the earth's gravitational

force. Since the first torsional mode has a much higher frequency

than either of the first two flexible modes (.75 Hz and 7.5 Hz, as

identified from an FFT of the data) and since it is rapidly damped, we

neglected its contribution to the accelerometer signal, treating it as

white noise, and left it unmodeled. A detailed discussion of the

causes of the excitation of the torsional modes and its effect on the

transverse bending characteristics of the active appendages can be

found in [6].

The physical characteristics of the structure are as follows.

The arm is made of aluminum and is 4 feet in length, 6 inches in width

and .125 inches in height. From this we obtain I - 4.0 ft, p - .027

slug/ft and I - 4.71 x 108 (ft)4 . The theoretically predicted value

for E is 15.84 x I08 lb/(ft)2 . The mass of the thruster assembly was

determined to be mT - .149 slug. From the calibration table in [6],

we find that a hose pressure of 300 psi is equivalent to a force of

*. .297 lb. We set therefore

f(t)- 0.297 lb 0 t 0.05

0.0 0.05 t t S 5.0

To serve as a basis for comparison, we neglected the hose effects

and structural damping (i.e. we chose oD - m - OH - kH - 0) and used

. the standard Euler-Bernoulli model with the parameters p, E. I and mT
Tp

and input f as specified above to generate the plot of linear

acceleration at the tip given in Figure 4.2.

me O

.. I

-" "." "'." .''" ."" "*'" . ""'"*"**' " """ " '"" " """ ' " " ' """' " "' " ' <: :' i " ' "" " """' ' " i"""" -
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x -Data

0- 0 Fit

x x
*x ×.

0C) -
41

I 1 I 1
0.00 1.00 2.00 300 4.00

Time (Seconds)

t- Figure 4.2

The plot was obtained by integrating the initial value problem (3.13),

(3.14) with N - 4 and then using (4.1) to compute the acceleration at

a'u asuN
the free end. The residuals -(tL) - (t,)) over the time

interval [0,5] are plotted in Figure 4.3. The sum of the squares of

the residuals (at intervals of .1 seoonds) was found to be 3.03.

I .

4 q. - , , - - - - -. .-. . . . , - - -. - . - , . " . . . .w ', . ."
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Figure 4.3

Using the data on the interval 3.0 to 5.0 (where the contribution

from the torsional modes has been significantly damped) with a

sampling period of .1 seconds we used our scheme with N - 4 to obtain

optimal estimates for the coefficient of viscosity oD and the hose

parameters mH, oH and k.. In the set of runs we are about to describe

the values of E and mT were held fixed at their theoretically

predicted values. A rough calculation based upon "matching" the first

two observed natural frequencies of the data with the first two modal

frequencies of the model was used to obtain a crude initial estimate

.

- ," °" - " ." . • . - * . " . " i % . " . " " . • % ' " - • * * - % • • • -



• . -- -.- '. L -- t..- --- . .. -.- . -

32

for the ratio kH/mH. Then, using our scheme to minimize over the

parameters mH and kH only, we obtained the optimal values shown in

Table 4.2 below. Integrating the system (3.13), (3.14) over the time

interval [0,5] with mH and kH set to the values in the table and c.

CH - 0 the sum of the squares of the residuals (at intervals of .1

seconds) was found to be .73.

,mH(Slug) k H(lb/ft)

.039269 .339935

Table 4.2

Next, holding mH and kH fixed at the values shown in Table 4.2, a

search on oH was carried out (the initial estimate for oH was taken to

be zero and cD was held fixed at zero). Then using the resulting

values of mH , cH and kH as initial estimates, a fit over all three

parameters was performed. The result is shown in Table 4.3. The sum

of the squares of the residuals was found to be .728.

-"s

m (slug) 0H(lb.sec/ft) kH(lb/ft)-" H

.043431 .004056 .351385

Table 4.3

• .Continuing to use the same procedure to generate "start up" values, we

'p
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eventually used our scheme to search over all four parameters cD' mHO

oH and LA simultaneously obtaining the values given in Table 4.4 and

the fit plotted in Figure 4.4. The residuals are plotted in Figure

4.5. The sum of their squares was computed to be .70.

SD (lb. see/(ft)2 )  m, (slug) cH (lb- seo/ft) kx:H(lb/f t)

127.40 .0801 .007804 .412977

Table 4.4

x Data
0

0 Fit
0

a.- I

0p oo2Zo .0 .0 0

C))

~1o

0

%0.00 .-00 2.00 '3-00 4.00
Time (Seaords)

Figure 4.4

* J~ ~~j~~ *. \ ~ .~ . ~ .%.
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J.i

In designing a controller for the RPL experiment, Floyd in [6]

used model adjustment to tune a simple, undamped, cantilevered beam

with tip mass model for the active arms (i.e. the arms with the hoses)

of the structure. He used the following procedure. The air bearing

table was locked in a stationary position. With the hose depressur-

ized, an impulsive force was applied to the beam and linear accelera-

tion at the tip was measured and recorded. Based upon the physical

assumption that with the hose depressurized, the presence of the hose

serves only to add mass to the tip of the arm, the parameter mT was
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adjusted so that the first mode or frequency of the model agreed with

the first observed cantilever mode (obtained via an FFT) of the data.

Then, with the hose pressurized, the same experimental procedure was

carried out. This time however, the modulus of elasticity E of the

beam was adjusted to compensate for the variation in stiffness which

results from the presence of the hose. The adjusted values of the tip

mass, mT. and modulus of elasticity, E, obtained by Floyd are given in

Table 4.5 below.
m-"a

m T (slug) T (lb/(ft)2 )

.254 17.31 x 108

Table 4.5

We integrated the system (3.13), (3.14) using the adjusted values of

mT and E given in the table (and o mH cH kH - 0) and obtained

the plot shown in Figure 4.6. The corresponding residuals are

plotted in Figure 4.7. The sum of the squares of the residuals was

computed to be 5.1.

Starting with the same basic model, we used our scheme to

determine the values of mT and E which minimize the sum of the squares

of the residuals over the time interval [3.0, 5.0] with a sampling

period of .1 seconds. Taking the theoretically predicted values of mT

, and E (mT - .149 slug, E - 15.84 x 10 lb/(ft)2 ) as start up values

for the optimization routine yielded the results given in Table 4.6.

-"o
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The corresponding fit and residuals are plotted in Figures 4.8 and 4.9

respectively below. The sum of the squares of the residuals (over the

interval [0,5]) was computed to be .73.

mT (slug) E (lb/(ft)2)

.185 21.95 x 108

:-. Table 4.6

"I.

o2 x Data

0 0 Fit

xx×x x x x
X \1-X xx Ixx

x
X x- x

-"_.; o
xx

4. .

Ii1 I I I
0.00 1.00 2.00 3.00 4.00

Time (Seoonds)

Figure 4.8
.1
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Figure 4.4

In summary, we have seen that analysis of the RPL experimental

data can be carried out in several ways with a number of different

..' models. Our techniques can be used to provide reasonable fits of the

~data to models with or without hose and/or beam damping. Even if one

attempts to leave the physics of the hose - beam dynamic interaction

unmodeled and perform "model adjustment" (by adjusting the values of

the tip mass m T and beam modulus of elasticity E), our estimation

techniques provide a much better fit than that obtained using "modal

' [i matching" methods common in engineering practice.

One of the primary objectives of our effort here was to

demonstrate the efficacy of our scheme and in particular, to assess

~its effectiveness when provided with actual experimental data. While

we are pleased with the results obtained for the RPL data, we are

' careful to point out that to provide a fair and complete evaluation of

'.i4 4-I
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the usefulness of our models for the RPL experimental structure, a

more complete and in-depth study involving extensive experimental work

and statistical analysis would necessarily be required.
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